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Abstract— Fluidification constitutes a relaxation technique to
study discrete event systems through a continuous approxi-
mated model, thus avoiding the state explosion problem. In this
paper, the approximation by deterministic Timed Continuous
Petri nets under infinite server semantics is studied. The main
contribution of this work is the addition of gaussian noise in
order to obtain a better (but stochastic) approximation when
synchronizations are important.

I. INTRODUCTION

The computational complexity of analysis and synthesis
problems for systems modeled as discrete event makes very
important searching for relaxations where computational
improvements are significant and, at the same time, the
induced errors are small enough to be useful in engineering.

Among the possible relaxations, fluidification or con-
tinuization (i.e. getting state-continuous approximations) is
one of the most promising, particularly when the initial
state contains many servers and clients. If Petri nets are
used, this means that the initial marking can be assumed
as ”big enough”. Two reasons for the above statements: a
big marking usually means impossible enumerative compu-
tations due to the underlying state explosion problem, and
- hopefully - errors tend to become smaller, because the
rounding effects are relatively less significant. Continuization
relationships were introduced at the net [1] and fundamental
equation [2] level. Revisiting the fluidification of timed
discrete models, in [3] we propose to use the markovian
interpretation of net models as the reference. This leads to
the so called infinite-servers semantics, when the number
of clients and servers can be considered as ”important”
and of similar order of magnitude. In particular, if servers
(grouped in stations, modeled as transitions in the PN field)
are continuously enabled, for long sequences of continuous
services the central limit theorem can be applied, and a
normal pdf can be assumed with a variance tending to zero,
thus leading to a deterministic approximation.

Stochastic Petri nets, under exponential services assump-
tion, straightforwardly lead to markovian net models [4]
(in the sequel Markovian Petri nets). In this paper the
deterministic approximation of these is enriched by adding
some noise to the firing of transitions. If the today classical
deterministic state-continuous approximations are usually
denoted as TCPN (Timed Continuous Petri Nets) [5], [6],
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the stochastic approximation will be denoted here as MCPN
(Markovian Continuous Petri Nets).

After dealing with basic concepts and notations (sect. II),
the deterministic approximation is considered from a new
perspective (sect. III). For the quality of the approximation,
it is made explicit that servers should be ”permanently”
active, while the evolution should be ”almost” in one region.
Later (sect. IV) a new extension, that constitute the central
point in this contribution, is considered by adding noise (of
null average value) to the TCPN model. The motivation is
to improve the approximation of the underlying stochastic
process. While the evolution is essentially in a single region,
the addition of noise is not relevant (what clearly can be
understood from the central limit theorem for extremely long
queues). Thus the improvement in the approximation appears
when the borders among regions are traversed in the random
trajectory. The advantages are on: (1) the approximation of
the transient behavior, when such switching among regions
appears, and (2) the computation of steady-states, if they are
”close” to the border of one region, and evolutions in others
are ”frequent”.

II. BASIC CONCEPTS AND NOTATION

We assume that the reader is familiar with Petri nets (PNs)
(for notation we use the standard one, see for instance [7]).

The structure N = 〈P, T,Pre,Post〉 of continuous Petri
nets (CPN ) is the same as the structure of discrete PNs. That
is, P is a finite set of places, T is a finite set of transitions
with P ∩ T = ∅, Pre and Post are |P | × |T | sized, natural
valued, pre- and post- incidence matrices. We assume that N
is connected and that every place has a successor, i.e. |p•| ≥
1. The usual PN system, 〈N ,M0〉 with M0 ∈ N|P |, will be
said to be discrete so as to distinguish it from a continuous
PN system 〈N ,m0〉, in which m0 ∈ R|P |≥0 . In the following,
the marking of a CPN will be denoted in lower case m,
while the marking of the corresponding discrete one will be
denoted in capital letter M. The main difference between
both formalisms is in the evolution rule, since in continuous
PNs firing is not restricted to be done in integer amounts
([5], [6]). As a consequence the marking is not forced to
be integer. More precisely, a transition t is enabled at m
iff for every p ∈• t, m(p) > 0, and its enabling degree is
enab(t,m) = minp∈•t{m(p)/Pre(p, t)}. The firing of t in
a certain amount α ≤ enab(t,m) leads to a new marking
m′ = m + α · C, where C = Post − Pre is the token-
flow matrix. As in discrete systems, right and left integer
annullers of the token flow matrix are called T- and P-flows,
respectively. When they are non-negative, they are called T-



and P-semiflows. If there exists y > 0 s.t. y · C = 0, the
net is said to be conservative, and if there exists x > 0
s.t. C · x = 0 the net is said to be consistent. Here, we
always consider net systems whose initial marking marks all
P-semiflows.

A markovian stochastic Petri net system MPN is a discrete
system in which the transitions fire at independent exponen-
tially distributed random time delays (see [4]). Then, the
firing time of each transition is characterized by its firing
rate. In this way, a MPN is a tuple 〈N ,M0, λ〉, where λ ∈
R|T |>0 represents the transitions rate. Transitions (like station
in queueing networks) are the meeting points of clients
and servers. In this paper, we will assume infinite-server
semantics for all transitions. Then, the time to fire a transition
ti, at a given marking M, is an exponentially distributed r.v.
with parameter λi ·Enab(ti,M), where the enabling degree
is forced to be an integer value, i.e. Enab(ti,M) is the value
minp∈•ti

{M(p)/Pre(p, ti)} rounded to the nearest lower
integer. Enab(ti,M) also represents the number of active
servers of ti at marking M. We suppose that a unique steady-
state behavior exists. Even more, we restrict to bounded in
average and reversible (therefore ergodic) PN systems.

A Timed Continuous Petri Net (TCPN ) is a continuous
PN together with a vector λ ∈ R|T |>0 . Different semantics have
been defined for continuous timed transitions, the two most
important being infinite server or variable speed, and finite
server or constant speed (see [5], [6]). Here infinite server se-
mantics will be considered. Like in purely markovian discrete
net models, under infinite server semantics, the flow through
a timed transition ti is the product of the speed, λi, and
enab(ti,m), the instantaneous enabling of the transition, i.e.,
fi(m) = λi · enab(ti,m) = λi ·minp∈•ti{mp/Pre(p, ti)}.
Observe that Enab(ti,M) ∈ N while enab(ti,m) ∈ R≥0.
For the flow to be well defined, every transition must have at
least one input place, hence in the following we will assume
∀t ∈ T, |•t| ≥ 1. The ”min” in the definition leads to the
concept of configurations ( see [8]): a configuration assigns
to each transition one place that for some markings will
control its firing rate. An upper bound for the number of
configurations is

∏
t∈T |•t|. The reachability space can be

divided into marking regions according to the configurations.
These regions are polyhedrons, and are disjoint, except on
the borders.

The flow through the transitions can be written in a
vectorial form as f(m) = ΛΠ(m)m, where Λ is a diagonal
matrix whose elements are those of λ, and Π(m) is the
configuration operator matrix at m, which is defined s.t. the
i-th entry of the vector Π(m)m is equal to the enabling
degree of transition ti (see [8]). A similar representation
can also be obtained for the enabling degree of the discrete
PN, i.e. Enab(M) = bΠ(M)Mc ' Π(M)M (the equality
is obtained for ordinary PN’s, but for weighted arcs, there
exists an error for rounding to the nearest lower integer).

The dynamical behavior of a TCPN system is described
by its state equation:

•
m = CΛΠ(m)m (1)

Inside a given region, the state equation is linear because
inside this Π(m) is constant.

III. DETERMINISTIC APPROXIMATION

In this section it is shown that the expected value of
the marking of a MPN system can be approximated by
the marking of the corresponding TCPN , always under
some particular assumptions. For that, we first approximate
the expected value of the making of the MPN via its
fundamental equation (i.e. not through the computation of
the underlying Markov chain). After that, we show that this
expected value can also be approximated by the marking of
the TCPN system.

First, consider a MPN system with structure N , timing
rates λ, and initial marking M0. Denote the initial time as
τ0 and consider a particular transition ti. By definition, at
any marking the time to fire each active server of ti is
characterized by a random variable having an exponential
p.d.f. with parameter λi. Now, consider a fixed time interval
∆τ . If a server is always active during ∆τ , then the number
of its firings (the number of jobs done) during ∆τ is
characterized by a r.v. having a Poisson p.d.f. with parameter
λi · ∆τ (see [9]). Furthermore, since we are considering
infinite server semantics, the number of firings of ti during
∆τ is the sum of the number of firings of each of its
servers during this time interval. If ∆τ is small enough then
the number of active servers of ti during this time interval
remains almost constant. Therefore, if at least one of them
is active at M0 then the number of firings of ti, during
the time interval (τ0, τ0 + ∆τ), can be approximated by a
r.v. ∆σi(∆Fi(τ0)) having a Poisson p.d.f. with parameter
∆Fi(τ0) = ∆τ · λi · Enab(ti,M0), where Enab(ti,M0)
is the number of active servers of ti at M0 (the sum
of independent Poisson distributed r.v.’s is also a Poisson
distributed r.v., whose parameter is the sum of the parameters
of the summands).

Notice that we are assuming that Enab(ti,M0) ≥ 1
and that ∆τ is small enough s.t. the probability that
Enab(ti,M0) remains constant during ∆τ is almost 1,
otherwise the approximation of the number of firings of ti
by a Poisson distributed r.v. is not valid.

Now, considering the firing count vector ∆σ(∆F(τ0)),
whose elements are the corresponding r.v.’s ∆σi(∆Fi(τ0))
of each transition, the marking at time τ0 + ∆τ can be
approximated using the fundamental equation, i.e.

M(τ0 + ∆τ) ' µ(τ0 + ∆τ) = M0 + C∆σ(∆F(τ0)) (2)

where µ(τ0 + ∆τ) is the approximation of the marking of
the MPN at time τ0 + ∆τ .

In the sequel, we will use k to denote τ0 + k∆τ . In the
same way, we will denote by µ(k) and ∆F(k) the approxi-
mation of the marking of the MPN at time τ0 + k∆τ and
the vector function ∆F(τ0 +k∆τ) = ∆τ ·Λ ·Enab(µ(τ0 +
k∆τ)), respectively, for any time step k.

Now, µ(1) is a r.v., whose expected value can be computed
as

E{µ(1)} = E{M0}+ C · E{∆σ(∆F(0))}



In this case, since M0 is a known value, then E{M0} =
M0. Furthermore, ∆F(0) is also a deterministic value,
then E{∆σ(∆F(0))} = ∆F(0) = ∆τ · Λ · Enab(M0).
Now, since Enab(M0) ' Π(M0)M0 (remember that it is
assumed to be ≥ 1, moreover, the equality holds for ordinary
nets), then E{∆σ(∆F(0))} ' ΛΠ(M0)M0∆τ . Therefore

E{µ(1)} ' [I + CΛΠ(M0)∆τ ]M0 (3)

Now, let us try to approximate the expected value for the
marking at time step 2. By the memoryless property of the
MPN system, (2) can also be used for the next time step,
then

M(τ0 + 2∆τ) ' µ(2) = µ(1) + C∆σ(∆F(1)) (4)

and also

E{M(τ0 + 2∆τ)} ' E{µ(2)}
= E{µ(1)}+ C · E{∆σ(∆F(1))} (5)

Now, notice that E{∆σ(∆F(1))} cannot be computed as
before, since µ(1) is a r.v. with unknown p.d.f., and so it is
∆F(1). However, obtaining the conditional expected value

E{∆σ(∆F(1))} =∑
µ E{∆σ(∆F(1))|µ(1) = µ} · Prob(µ(1) = µ)

' ∑
µ ΛΠ(µ)µ∆τ · Prob(µ(1) = µ)
= E{ΛΠ(µ(1))µ(1)∆τ}

(6)

As already considered for M0, we have to assume that all
the transitions are enabled at µ in order to approximate the
number of firings during ∆τ at µ by a Poisson distributed
r.v.. This assumption must be true at least for the most
probable values of µ(1). This is generalized by the following
condition:

Condition 1. Given a time step k, the probability that the
transitions are all enabled at marking µ(k) is near one.

Moreover, an additional assumption that the net system
probabilistically remains in the region defined by M0 is
technically stated as:

Condition 2. Given a time step k, the probability that the
marking µ(k) is outside the marking region of M0 is near
zero.

If condition 2 is fulfilled for k = 1, then Π(µ(1)) =
Π(M0) and so

E{ΛΠ(µ(1))µ(1)∆τ} = E{ΛΠ(M0)µ(1)∆τ}
= ΛΠ(M0)∆τE{µ(1)}

So, substituting into (5), we obtain that

E{M(τ0 + 2∆τ)} ' E{µ(2)} ' [I + CΛΠ(M0)∆τ ]·
·E{µ(1)} ' [I + CΛΠ(M0)∆τ ]2M0

Finally, following and inductive reasoning, we obtain that

E{M(τ0 + n∆τ)} ' E{µ(n)}
' [I + CΛΠ(M0)∆τ ]nM0

(7)

where it is assumed that conditions 1 and 2 are always
fulfilled during the time interval (τ0, τ0 + n∆τ).

Now, consider the TCPN system given by 〈N, λ,m0〉,
and its state equation (1). The corresponding discrete-time

model (see, for example, [10]), taking ∆τ as the sampling
period, is given by

mk+1 = ADmk

where AD =
∑∞

r=0
(CΛΠ(mk)∆τ)r

r!

For a small enough ∆τ , AD ' I + CΛΠ(mk)∆τ .
Therefore, mk+1 is approximated by

mk+1 ' mk + CΛΠ(mk)mk∆τ (8)

Comparing this equation (for k = 0) with (3), it can be
concluded that, if M0 = m0 and the condition 1 is fulfilled,
then E{M(1)} ' m1. Moreover, considering the condition
2, E{µ(1)} ' E{M(1)} belongs to the same region of M0,
so, m1 will be quite probably in the same one. Therefore,
the marking at time 2 of the TCPN system can be estimated
by using the same difference equation (i.e. (8) with k = 1
and Π(m1) = Π(m0)). Following an inductive reasoning
over the time interval (τ0, τ0 + n∆τ), we obtain:

mn ' [I + CΛΠ(m0)∆τ ]nm0

Comparing this equation with (7), it can be concluded that
the marking trajectory of the TCPN system approximates
the expected value of the marking of the corresponding
MPN if the conditions 1 and 2 are fulfilled during (τ0, τ0 +
n∆τ).

For instance, consider the MPN of figure 1(a) with firing
rates λ1 = λ2 = λ3 = 1. The TCPN system has been
simulated, by using MATLAB, and the steady-state results
have been compared with those obtained for the MPN using
TimeNET [11]. Table I resumes the results thus obtained.
The first column represents the initial marking, given by
M0 = m0 = q · [1, 1, 1]T . Second and third columns are
the expected value of the MPN at the steady state, and
the final value of the TCPN , respectively, for place p2. The
fourth column is the marking error and the final column is the
probability that all the transitions are enabled at the steady
state (for the discrete system).

Since there is no synchronization in this net, condition 2
is always fulfilled. A value of 1 in the fifth column means
that the first condition is fulfilled. As expected, the error
is lower when this value approximates 1, which occurs for
large values of q. The figure 1(b) shows the evolution of
both the marking of the TPCN and the expected value of
the marking of the MPN , at place p2, for the initial marking
M0 = 6 · [1, 1, 1]T . As it can be seen, the transient behavior
of the MPN is also well approximated by the TCPN .

Now, consider the MPN system of figure 2, and its
corresponding TCPN one, with initial marking M0 =
m0 = [5, 5, 55, 5, 6, 4]T and timing rates λ1 = λ2 = λ3 = 1
for the first three transitions. Both MPN and TCPN are
studied for different values of λ4. The results are shown
in Table II. The values of the second and third columns
correspond to the steady state marking of place p3. The value
of column P.C1 is the probability that all the transitions are
enabled at the steady state, i.e. that the condition 1 is fulfilled,
while the value at the last column (P.C2) is the probability



TABLE I
MARKING APPROXIMATION OF p2 FOR THE MPN IN FIG. 1(A)

q MPN TCPN error P. C1
3 2.126 2.25 5.81% 0.669
4 2.878 3.00 4.25% 0.844
6 4.370 4.50 2.98% 0.987
9 6.639 6.75 1.67% 0.998
12 8.911 9.00 0.99% 0.997
15 11.911 12.00 0.75% 0.999

(a) (b)

Fig. 1. (a) A join-free, but not ordinary, Petri Net System. (b) In solid line,
the evolution of the expected value of the marking at place p2. In dashed
line, the corresponding marking of the TCPN.

that the marking is inside the marking region of M0, i.e. that
condition 2 is fulfilled.

It can be observed that, the lower the probability that
condition 2 is fulfilled, the bigger the error in the marking,
even if the probability that condition 1 is fulfilled increases.
This example shows the importance of condition 2.

Fig. 2. Marked graph in which condition 2 is not fulfilled

IV. STOCHASTIC APPROXIMATION BY ADDING
NOISE TO THE TCPN SYSTEM

In this section, an addition to the TCPN model is
introduced in order to improve the approximation, even if

TABLE II
MARKING APPROXIMATION OF p3 FOR THE MPN OF FIG. 2

λ4 MPN TCPN error P. C1 P. C2
2 54.62 55 0.7% 0.812 0.774

1.5 53.87 55 2.1% 0.889 0.576
1.2 51.16 55 7.5% 0.930 0.306
1.1 46.65 55 17.9% 0.941 0.207

1.05 40.72 55 35.0% 0.956 0.040

condition 2 is not fulfilled. For this, we first estimate the
moments of the MPN system, next, we propose a modified
TCPN system, by adding noise, whose moments coincide
with those of the MPN one.

Then, let us focus on the approximation of the moments of
the marking. As shown in the previous section, the marking
of the MPN at time τ0 +∆τ is approximated by (2). Since
M0 is a deterministic value and the entries of ∆σ(∆F(0))
are independent Poisson r.v.’s, then the mean and covariance
matrix of µ(1) ' M(τ0 + ∆τ) can be easily computed.
For the next time step, we obtained (4). According to this
equation, in order to approximate the mean and covariance
matrix of µ(2) ' M(τ0 + 2∆τ) it is necessary to estimate
the mean and covariance of ∆σ(∆F(1)).

As already observed, the firing count ∆σ(∆F(1)) is
Poisson distributed with parameter ∆F(1), but now this
parameter is also a r.v.. However, the mean and variance of
the firing count can be expressed in terms of the moments
of its parameter, as shown next for a particular transition ti
(first equation is equivalent to (6), both are recalled from [9])

E{∆σi(∆Fi(1))} = E{∆Fi(1)} (9)

var{∆σi(∆Fi(1))} = var{∆Fi(1)}+ E{∆Fi(1)} (10)

Furthermore, using the total probability theorem and some
properties of the conditional expected value, it can be demon-
strated, for any other transition tj or place pj , that

cov{∆σi(∆Fi(1)),∆σj(∆Fj(1))}
= cov{∆Fi(1), ∆Fj(1)} (11)

cov{∆σi(∆Fi(1)),µj(1)} = cov{∆Fi(1),µj(1)} (12)

Then, denoting the covariance matrices of ∆F(1) and
∆σ(∆F(1)) with Σ∆F(1) and Σ∆σ(∆F(1)), respectively, it
is easy to see, by using (10) and (11), that

Σ∆σ(∆F(1)) = Σ∆F(1) + diag [E{∆F(1)}] (13)

where diag[a] is a diagonal matrix whose diagonal elements
are the corresponding entries of a.

Therefore, with all these equations, we can express the
moments of µ(2) as functions of the moments of µ(1) and
∆F(1). In general, these equations allow us to express the
moments of µ(k + 1) as functions of the moments of µ(k)
and ∆F(k), for any time step k, in the following way

E{µ(k + 1)} =
[

I C
] [

E{µ(k)}
E{∆F(k)}

]

Σµ(k+1) =
[

I C
] [

Σµ(k) Σµ(k),∆σ(k)

Σ∆σ(k),µ(k),∆τ Σ∆σ(∆F(k))

] [
I

CT

]

where Σ∆σ(∆F(k)) is given by (13), and the cross co-
variance matrices Σµ(k),∆σ(k) and Σ∆σ(k),µ(k) can be
computed by elements using (12), i.e. the element at the
i-th row and j-th column of Σµ(k),∆σ(k) is given by
cov(µi(k), ∆σj(∆Fj(k))) = cov(µi(k), ∆Fj(k)).

Next, we propose a modification to the TCPN determin-
istic model. Consider again the discrete-time version of the



TCPN system, given by (8). Let us define a noise column
vector vk, of length |T |, whose elements are independent
normally distributed r.v.’s with mean and covariance matrix:

E{vk} = 0
Σvk

= diag[ΛΠ(mk)mk∆τ ] = diag[fk∆τ ] (14)

Then, the discrete-time version of the TCPN system,
with the noise vk being added to the firing count, is given
by the following difference equation:

mk+1 ' mk + CΛΠ(mk)mk∆τ + Cvk

= mk + Cwk
(15)

where wk = ΛΠ(mk)mk∆τ + vk = fk∆τ + vk.
In the sequel, this modified TCPN will be called marko-

vian continuous Petri net (MCPN ) so as to distinguish it
from the original deterministic one. Now, in order to show
that this system approximates the MPN one, let us follow
an inductive reasoning. First, we assume that the initial
marking is known, so we set m0 = M0. Now, suppose
that at some time τ0 + k∆τ , the marking of the MPN
system M(τ0 + k∆τ) ' µ(k) is well approximated by
mk, so the mean fulfills E{mk} ' E{µ(k)} and the
covariance matrix fulfills Σmk

' Σµ(k). In this way, the
r.v. ∆F(k) is well approximated by the r.v. fk∆τ (i.e. the
r.v.’s obtained by applying a similar function are similar).
Furthermore, with fk being a r.v., it can be demonstrated
that Σvk

= diag[E{fk∆τ}]. Then, using (9) and (13), it is
easy to see that

E{wk} = E{fk∆τ} ' E{∆F(k)} = E{∆σ(∆F(k))}
Σwk

= Σfk∆τ + diag[E{fk∆τ}]
' Σ∆F(k) + diag[E{∆F(k)}] = Σ∆σ(∆F(k))

In the same way, for any transition ti and place pj it is
easy to demonstrate, using (12), that

cov(wki,mkj) = cov(fki∆τ,mkj)
' cov(∆Fi(k), µj(k)) = cov(∆σ(∆Fi(k)),µj(k))

Therefore, the mean and covariance matrix of M(τ0+(k+
1)∆τ) ' µ(k + 1) are similar to those of mk+1. Now, in
order to show that they also have a similar p.d.f., suppose
that the p.d.f. of the marking of the MPN for the previous
s steps are well approximated, and let n = k − s. Then,
iterating (3) we obtain

µ(k + 1) ' µ(n) + C ·
s∑

r=0

∆σ(∆F(n + r))

By the total probability theorem
∑s

r=0 ∆σ(∆F(n + r))
' ∑

µ

∑s
r=0{∆σ(∆F(n + r))|µ(n + r) = µ}
·Prob(µ(n + r) = µ)

where the sum
∑

µ consider all the possible values of µ
during the time interval (n, k). Now, for each fixed µ, the
entries of {∆σ(∆F(n + r))|µ(n + r) = µ} are inde-
pendent Poisson distributed r.v.’s (independent for different
time steps). So, by the Central Limit Theorem (see, for
example, [12]), for a large enough s, the entries of the sum

∑s
r=0{∆σ(∆F(n+r))|µ(n+r) = µ}·Prob(µ(n+r) = µ)

can be considered as normal distributed r.v.’s. Actually, the
distribution of each entry of this sum converges very fast to a
normal p.d.f. (in few time steps), because Prob(µ(n + r) =
µ) is almost constant for consecutive time steps and the r.v.’s
{∆σ(∆F(n+r))|µ(n+r) = µ} are identically distributed,
which implies that the variances of the summands are similar
(so they fulfill the Lindeberg condition for the proof of the
Central Limit Theorem [12]).

Similarly, for the MCPN , we obtain

mk+1 ' mn + C ·∑s
r=0 wn+r∑s

r=0 wn+r '
∑

m

∑s
r=0{wn+r|mn+r = m}

·Prob(mn+r = m)

By definition of vk (14) and wk (15), the entries of
{wn+r|mn+r = m} are independent normally distributed
r.v.’s (independent for different time steps). In the same
way, the entries of the vector

∑s
r=0{wn+r|mn+r = m} ·

Prob(mn+r = m) are also normally distributed r.v.’s.
Therefore, the distributions of

∑s
r=0 ∆σ(∆F(n + r)) and∑s

r=0 wn+r are similar (their summands have similar distri-
butions). Moreover, if condition 1 is fulfilled, they approxi-
mate the distribution of the sum of the corresponding firing
counts of the MPN . Then, the p.d.f. of M(τ0+(k+1)∆τ) '
µ(k +1) and mk+1 are similar. Finally, let us point out that
the hypothesis considered about the approximation for the
previous s steps is nearly true for the first time steps, this is
because the initial marking is a known deterministic value
and s is not required to be large, which implies that the
distributions for the first s markings are close to their means
(variances are very low).

Therefore, it can be concluded that, considering a time
interval (τ0, τ0 + k∆τ), the moments of the marking of
the MCPN system (15) approximate the moments of the
marking of the corresponding MPN , if the initial conditions
of both coincide, and condition 1 is fulfilled during (τ0, τ0 +
k∆τ).

For instance, consider again the MPN of figure 2. Sim-
ulations of the corresponding MCPN were made, by using
MATLAB, for the same values of initial marking and timing
rates. For each value of λ4 a simulation was obtained for a
very large time, so, the mean value of these correspond to the
expected value at the steady states. These means are shown in
Table III (third column). Comparing the errors thus obtained
(fourth column), with those of the TCPN (showed in II), it
can be seen that the approximation by MCPN systems is
much better.

Furthermore, for timing rates λ1 = λ2 = λ3 = 1, λ4 = 2
and initial marking M0 = [1, 9, 1, 59, 1, 9]T , the expected
value of the marking of the MPN system is computed by
using TimeNET. Also, the MPN system and the correspond-
ing MCPN are simulated 30 times with MATLAB. Figure 3
shows the evolution of the marking of p3. The smooth curves
correspond to the expected value of the MPN (denoted
as E{M}) and to the original TCPN system (denoted as
TCPN ). The other curves correspond to the average means



TABLE III
MARKING APPROXIMATION OF p3 FOR THE MPN OF FIG. 2 VIA ITS

CORRESPONDING MCPN

λ4 MPN MCPN error
2 54.62 54.63 0.26%

1.5 53.87 53.88 0.22%
1.2 51.16 51.17 0.49%
1.1 46.65 46.66 1.52%
1.05 40.72 40.73 1.78%

of 30 realizations of both the MPN (denoted by MPN )
and the MCPN system (denoted by MCPN ). Vertical
lines represent changes of regions. As it can be seen, the
average means of the realizations of both systems MPN
and MCPN are similar, and close to the expected value of
the marking. On the other hand, the marking of the TCPN
system shows a more significant error (of 8.8% at time
τ = 32), when the second change of region occurs.

Fig. 3. Approximation of the transient behavior of the MPN of fig. 2 for
λ4 = 2.

Now, consider the MPN of figure 4(a), with timing
rates λ1 = 3, λ2 = λ3 = λ4 = 1 and initial marking
M0 = [0, 13, 20, 7, 8]T . The expected value of the marking
at the steady state, for different values of the initial marking
at place p5, is computed by using TimeNET. Also, for
each value of p5 (at the initial marking), a simulation of
the corresponding MCPN was obtained for a very large
time with MATLAB. The results obtained are shown in
Table IV. The first column corresponds to the value of
M0(p4)+M0(p5) at the initial marking. The second column
shows the expected value of the marking of the MPN for
place p5 at the steady state, while the third one shows the
means of the simulations of the corresponding MCPN . The
fourth column corresponds to the marking error and the fifth
column is the probability that condition 1 is fulfilled.

In this net, the relationship between the initial marking
and the corresponding throughput, studied in [13], is non
monotonic. In that paper it was concluded that its corre-
sponding TCPN (without noise) does not provide a good
approximation. However, in Table IV it can be seen that
the MCPN does provide a good approximation for the

TABLE IV
APPROXIMATION OF p5 IN STEADY STATE FOR THE MPN OF FIG. 4(A)

M0(p4) MPN MCPN error P. C1
+M0(p5)

15 3.71 3.68 0.7% 0.929
20 4.41 4.22 4.2% 0.912
30 4.24 3.96 6.7% 0.854
40 3.65 3.21 11.9% 0.707
50 3.34 2.62 21.5% 0.534

initial conditions in which M0(p4) + M0(p5) ranges from
15 to 30. As it is expected, the larger is the probability
that condition 1 is fulfilled, the better the approximation.
Furthermore, the transient behavior can also be well ap-
proximated. Figure 4(b) shows the evolution of the marking
of place p1 during the first 3.5 seconds, for the initial
marking M0 = [0, 13, 20, 7, 8]T . The expected value of
the MPN , obtained by using TimeNET, is denoted by
E{M}, while the marking of the original TCPN system is
denoted by TCPN . The mean trajectory of 100 simulations
of the MPN and the MCPN , obtained with MATLAB,
are also shown in fig. 4(b), where are denoted by MPN
and MCPN , respectively. Notice that the curve MCPN is
always close to the curves E{M} and MPN , furthermore,
MCPN provides a better approximation than TCPN (the
approximation by the TCPN is not so good because there
are several regions).

(a) (b)

Fig. 4. (a) Petri Net System. (b) Approximation of the transient behavior
of the marking of place p1. Region commutations in the TCPN occur at
times 0.253, 0.715, 0.718 and 1.137.

V. CONCLUSIONS

Using the fundamental equation, we have shown that a
MPN system can be approximated by its corresponding
TCPN one, whenever the transitions are enabled and the
marking remains inside the same region. Moreover, by
adding gaussian noise to the TCPN system, we have ob-
tained a new model MCPN which approximates the MPN
considering different regions. This result is very interesting,
since it constitutes a bridge between MPN systems and
state-continuous ones. Then, the MPN system can be now
studied by using the tools developed in Control theory for
state-continuous systems.
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